APPENDIX A GEOCHEMICAL DATA A-1 EPA (2000) Oct 2000 Sampling ## USEPA REGION 9 LABORATORY REPORT NARRATIVE CASE NUMBER: SAMPLE DELIVERY GROUP: PROGRAM: DOCUMENT CONTROL #: DATE: ANALYSIS: SAMPLE NUMBERS: R01S07 00299B, 00299C SUPERFUND ESTW-9B-3810 11/07/00 **METALS** | SAMPLE | ID | | LAB | ORATORY | SAMPI | ED | |---------|----|------|-----|---------|-----------------------------|-----| | T-1 | | | | AB28925 | | | | T-2 | | 3.88 | | AB28926 | | | | T-3 | | | | AB28927 | | 449 | | T-4 | | | | AB28928 | | | | T-5 | | | | AB28929 | errogen er
Grand og en a | | | T-6 | | | | AB28930 | | | | T-7 | | 2,77 | | AB28931 | 400 | | | T-8 | | | | AB28932 | | | | T-9 | | | | AB28933 | | | | T-10 | | | | | | | | T-11 | | | | AB28934 | | | | SALT-1 | | | | AB28935 | | | | SALT-2 | | | | AB28936 | | | | SALT-3 | | | | AB28937 | | | | SALT-4 | | | | AB28938 | | | | SALT-5 | | | | AB28939 | | | | SALT-6 | | | | AB28940 | | | | | | | | AB28941 | | | | SALT-7 | | | | AB28942 | | | | SALT-8 | | | | AB28943 | | | | SALT-9 | | | | AB28944 | | | | SALT-10 | | | | AB28945 | | | | SALT-11 | | | | AB28946 | | | | | | - | | | | | ## GENERAL COMMENTS Twenty two solid samples were received from the Anaconda Copper Mine, Yerington Superfund project on 10/25/00. The samples were analyzed for metals following SW-846 Methods 6010, 7471 and 7000 (GFAA metals). All mercury samples were analyzed within the required 28-day holding time. All other elements were analyzed within the required 180-day holding time. The sample results are reported in mg/Kg dry weight. ## SAMPLE RECEIPT AND PRESERVATION Samples T-1, T-2, T-3, T-4, T-5, T-6, T-7, T-8, T-9, T-10 and T-11 were received at 10°C, which is outside the 2-6°C temperature requirements. It is believed that this discrepancy will not have an effect on the metals results. ## COMMENTS The following comments appear on the Summary of Analytical Results: | Sample | Location description | |----------|--| | CELLAR | R Flooded cellar at process fac. | | PS-1 | slot collection pond | | PS-2 | Raffenate #2 Pond | | PS-3 | Megapond | | PS-4 | VLT leachate pad | | PS-5 | Duplicate of PS-4 | | SALT-1 | | | SALT-2 | | | SALT-3 | | | SALT-4 | [] [] [] [] [] [] [] [] [] [] | | SALT-5 | | | SALT-6 | | | SALT-7 | Anaconda tailings leach pond | | SALT-8 | Sulfide tailings impoundment | | SALT-9 | | | SALT-10 | Slot area near USEPA-3 | | SALT-11 | Duplicate of SALT-2 | | T-1 | slot tailings pile | | T-2 | sulfide dump pile | | T-3 | Phase I tailings leach pad | | T-4 | Anaconda Oxide stockpile | | T-5 | Phase II leach pad | | T-6 | VLT leachate pad | | T-7 | Anaconda sufide tailings pond | | T-8 | Iron bleed tallings pand | | T-9 | Anaconda tailings leach pond | | T-10 | Sulfide tailings impoundment | | T-11 | Duplicate of T-2 | | MW-2 | Monitoring well south of VLT stockpile | | MW-4 | Monitoring well northwest of VLT pad | | MW-5 | Monitoring well near NE corner of VLT leach pad. | | | Monitoring well North of site | | 11000 00 | | USGS-2B Monitoring well near old power plant north of site. USEPA-2 Downgradient monitoring well at Luzier Ln and HWY 95A USEPA-4 Duplicate of MW-4 SUMMARY, OF ANALYTICAL RESULTS Pt-ck Mine, Yerington 00299b, 00299c 11/07/00 Case Number: Site: SDG: Date: Analysis: Metals Matrix: Solids | | 00 | | | | | | | |--|--|--|------------------------|--|--|----------------------------|---| | | | | | D. | Ω | | | | GFAA Reagent Blank-i N/A mg/Kg | Result
N/A | NA
NA
NA | < | V 4 | | | | | GF
Rea
Bla
N | Resul | N/A
N/A | A/N N/A | 0.6
N/A | NA
2 | N/A | N/A N/A | | | Com | | | | | | | | | | | | | | | | | # T . P | | | ΩΩ | n n | Ω | | | | ICP
Reagent
Blank-1
N/A
mg/Kg | 200
20
20
50 | | 1 4 2 | 10 20 | N/A 10 | 100 | N/A | | | | | | | | | | | | 1000 MIN | | | | | | | | 11 9 9 11 | n | Ω | | | Ü | | | | N/A
SALT-11
AB28946
10/19/00
mg/Kg | 30 = 4 | 2 2 33 33 33 35 35 35 35 35 35 35 35 35 35 | 85000
11000 | 460
1900
1900
1900 | 2000
10 | 1900
210
88 | 72 | | me) | | V | | | | | | | 0 | | - | | | | | | | 0.20 | $\Gamma = \Gamma$ | n | | 4 | ۵,5 | a D | | | N/A
SALT-10
AB28945
10/21/00
mg/Kg
Result | 30
20
20 | 2
14 (f)
2 | 200
130000
750 | 1500
0.05 | 10 10 | 2700
200
7 | 60
tter. | | Com | | | | | | | each le | | 0 | | | | | | and | live for | | | D | D. | | | ÞÞ | | t narra | | N/A
SALT-9
AB28944
10/19/00
mg/Kg
Result | 20
20
110 | 15 21 | 83
1000
9 | 7209
470
10 | | 56000
100
150 | 98
the repor | | | | | | 40 | | 56 | on in th | | Q Com | | | Θ | | | | ng secti | | | םם | | r
D | 44- | D = | | Spondir | | N/A
SALT-8
AB28943
10/19/00
mg/Kg
Result | 20
20
20
20 | 8_ | 000 | 9 8 | | | e corre | | 優 | 20
R
20
20 | 36000 | 13000 | 2700
70
0.04
6 | 8000 | 100
29
14 | Solids 96 98 600 000 - Comments refer to the corresponding section in the report narrative for each letter. A - Not Applicable. | | iample No. Ab Sample I.D. Ab Sample I.D. Pate of Collection Inits Analyte | | | | | | | 6 Solids our - Comments refe | | Sample No. Sample LD. Lab Sample LD. Date of Collectio Units Analyte | intimony
rettic
arium
eryllium | admium
ilcium
iromium
iball | t | agnesium
anganese
ereury
ekel | un un | tur
mni | ds
Comme
fot App | | Samp
Samp
Lab S
Date o
Units
Analy | Antimos
Arsenic
Barium
Berylini | Cadh
Chror | Copper
Iron
Lead | Manga
Mercur
Nickel | Potasvilin
Selenium
Silven
Sodium | hallium
/anadium
inc | 6 Solids
Jom - Col | refer to the corresponding section in the report narrative for each letter. ^{1/}A - Not Applicable. 1/R - Not Required. Refer to data qualifiers. The parameter was analyzed for, but was not detected. The associated value is the sample quantitation limit, adjusted for dilution, if any. The associated value is an estimated quantity. It results are in mg/Kg dry weight. | | | | | | 1 000 | | t | | | | - | 4 | * | | | - | | , | | e , | | e | 9. | - | | |-------|-----|-----|--------------|------|---------|-------|----|----|-----|-----|---|-------|----|------|--------|---|-------|-----|------|-----|------|-----|----|-----|------| | | | | | | 3 | | | | | | | + | - | | | - | | | - ' | | - | - | 1. | - | | | 3 | | | | | > | | 2 | | | 185 | - | | + | | | _ | _ | _ | | | - | 4 9 | | 9 | 1 | | Marin | 7.5 | 1.3 | AB 18929 | 200 | Revell | 1484 | N. | 90 | B | 1.1 | 1 | 1836 | • | | 221681 | • | 10701 | 5 | 0.04 | • | 3000 | | | 100 | 101 | | | | | | | ě | | = | | | | | - | | | | = | | | - | | + | | | × | | | | | | | | 3 | | - | | | | | - | | | | - | | | - | | - | - | | - | | | | - | | | | 7 | | 1 | | | | = | | | | | | | | _ | | | 2 | 3 | - | - | | | 2 | 1.1 | A 11 18 2 18 | 2000 | Herself | 1,580 | 97 | Ξ | 191 | : | i | 8,500 | 11 | 4331 | 111081 | z | 1160 | 181 | 1.1 | 2 | 6017 | ** | -1 | ä | 1833 | | | - | | | | - | | | : | | | | | | | | * | | | - | × | 9 | × | | - | | | | | | | | 17.7 | | - | - | | | | | | | | | | | - | - | - | - | | - | | | | 117 | | | | - | _ | - | | | | | | | | | | | | | | | | - | | - | | 1.00 | Namiter | 100 | Namiter | 100 | Namiter | 100 | Namiter 1 g. 9 2- + 5 Filename: 00299BC.mel.12M Table 1A Summary of Arabytical Results | | - 1 | | - | | W W | -02 | 8 | |---|--|---------------|---------|--|---------------------------------------|--|---------------------------------------| | | | - | | 3,7 | - | | - | | | 9 | 11.1 | = = | | # 3 | 9,00 | 1=1=1 | | | SALT 1
SALT 2
AB28018
10/19/06
mg/Kg
Broatt | 30 0 | 9 | 9 9 9 9 | 5,000 | 8 E 8 E - | 8 2 c 3 2 | | | | 50 | 795 | | | 41212 | E | | | 3 | | | | | 200.0 | 121 1 3 | | | 5 | 2,2 | | | | | F (F) | | | SALT 2.0 D2s
SALT-2.0 D2s
All 200 V2
sarring
mg/kg
Resett | (1000)
(1) | 2 S G - | 8 = 8 H | | 5 2 2 3 | 8 8 1 5 5 | | | 3 | * | - | | £ 1 | 5 | IEI I I I | | 4 | 3 | - | * | | - | | (m) : 1 | | <u> </u> | 9 | 2 : | 2 = 2 | | - | 2 22 | p' 2:0 | | Analysis:
Materix: | SALT-1
SALT-1
AB3903
IG1908
ng/kg | 9 0 | ・共二へ | 8 = E B | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2000
2000
1000
1000
1000
1000
1000
1000 | - 8 S - 2 S | | | | - | 9 | 4 | ť | + +4 | ¥ | | | 3 | - | - | - | ~ | - 0.0 | | | | | 1 | = | 1000 | | | 2 = 2 | | | LARDED
AREAS
BARRES
BARRES
RESPECT | | 8 R E - | | | \$ 2 <u>8</u> z | n 5 5 5 5 5 | | | | : | : | - | 2 | < | - | | | 3 | | - | - | - | | | | | - | 2 | | - | | | 1 1 | | | 1.18
1.18
AB.2811
(6)3946
1805.6 | Tions II. | 5 8 % | - <u>1</u> = = <u>1</u> | - N | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ~ %] 5 8 \$ | | | | 1 : | £ (| 4.4 | 21.5 | | 4 | | | |] = | - | | ~ | ¥ - | 5 | | | | 2 | 4 | - | - | 2 | | | | 1.9
1.9
A.H.20033
143.1508
0.02/8.g. | # 10 m | 表示言 | - = 5 | 1 about 1 | 1000 | 3 - <u>9</u> 8 4 9 1 | | 4 | | 1 7 | | н | | | ¥ | | . 3 | | 1 1 1 | | - | | | - | | P
1299C
Data | | 2 | | | | | | | Case Number: 801507 Sac. Americals Miss SDG: 8812991 and 602990 For London Bara Val. Im | 11/29/00
1.4
1.8
1.82.89.2
14.900 | Bevall | R 💆 🖺 🗆 | - 3 E x | 1000
1000
1000
1000 | a 2 3 £ | 5 - 9 E = 5 | | | Delice. Scanner for allowed in the standard of | | | Calendaria
Calendaria
Calendaria | t sppra
han
han | Magnere
Steamy
Sakel | Schools
School
Dalbar
Cauden | The School of the Control Con Lable 1A Summary of Analytical Results | Care Statement Fortier Mine Special Manual M | \$1129.00
\$41.1
\$41.1
\$41.00
\$61.00 | | | | | _ | _ | _ | | | | _ | | | | | | | | | | - | |--|--|---------|---------|------|------|------------|--------|--------|---------|-------|--------|-------|-------|------|--------|-------|-------|------|-------|------|------|--------------------| | e = 4 | 9.00
SALT-4
SALT-4
AB 28999
10.1570 | Brook | 8.71830 | ∌ ≣ | 1 | | * 11 | g, | 9 . | | | 11160 | 0.100 | 3 | (1980) | - | 1000 | 1000 | - | 931 | 4 | () Quantition Last | | floc
40.2% | | 9 | | 2.3 | - | - | _ | _ | _ | _ | - | _ | - | _ | _ | - | - | - | - | - | _ | * 10000 | | , T | | _ | | | * | - | | - | _ | _ | _ | | _ | - | 2 | - | _ | - | | _ | - | 1000 | | ž. | | Val in | - | | - | | | | | | = | | | - | = | - | = | | * | _ | _ | | | | STINS
STINS
AREA
BUREAU | Real | | - | | | | 5.0 | 400 | 380 | | 100 | - 2 | | | | | 3 | | - | - | | | | 2278 | | | | | | | - 4 | | | - | - | * | 1111 | | _ | 18700 | 190 | 4 | R | - 60 | | | | - | 100 | - | | - | = | | | - | - 3 | _ | | - | | - | | | - | - | | - | | | | | Com | - | | - | | | | | | - | _ | | | | | - | | | | | | | | SALTA
SALTA
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MILBELL
MI | Heralt | 2 | * | 9 5 | | 143661 | | 9872 | 0.000 | (3000) | 1141 | ** | 0.00 | 117 | *1 | 400 | | 2 3 | | | | | | | 9 | = | | | 9 | | _ | | _ | _ | _ | - | - | - | 314 | - | - | - | - | - | | | | | 2 | 1- | - | - | | _ | | | • | _ | _ | | - " | * | - | - | | _ | - | | | | | | | v | 0 | 4 | | | | | | | | | - | 835 | | - | | _ | _ | | | | | SAI 17
SAI 17
ALESWAZ
parted
parted
parted | Bred | 11 | - 4 | | - | 100 | 4 | - | | 233 | # | | | | | - | | ^ | | | | | | 22288 | 9.5 | | | | | | | | | | 9 | 1001 | 976 | | | 91 | | 910 | . 19 | | | | | | 0 | : | | | | | | | = | | | 3 | * | | 2 | = | - | | _ | | | | | | 3 | | 7 | | | | | | 2 | | | | + | | - | | | | | | | | | × × × ± . | | - | 2 2 | - | _ | _ | - | - | 1000 | Š | - | | * | 1 | t | - | | | | | | | | SALTE
SALTE
ABBRO
Optimo | Menual) | n. | - E | 1.0 | 1 Property | 11 | - : | | | 2300 | 1 | | 0008 | | 10000 | 901 | 110 | * | 8 | | | | | | > | = | = | _ | | | - | _ | = | | | - | - 2 | 2.3 | 1 | = | | _ | _ | | | | | | Tr. | - | | | | | - | | = | | | - | - | - | - | 1 | | | | | | | | | i | | : - | | | | × | | 1 | | | AIL | 3 | | 30 | | | 1 | | | | | | Satily
Satily
Asserted
replication | 211001 | 30 | 2 5 | 0 | 3300 | 12 | . : | 2218.03 | | | 0.04 | 01 | 1000 | | 35090 | 100 | 130 | SE 13 | | | | | | - | 9 | 5 | | _ | - | | _ | _ | _ | - | | - | - | - | | - | + | + | | | | | | | • | = - | • • | | | _ | _ | _ | - | _ | _ | - | | _ | - | 1 | 1 | + | | | | | | | 1 | υģ | 14 | | 1 | | | | ŧ | | | 161.1 | | | ō. | 1 | 1 | 1 | | | | | | SALT-10
SALT-10
AREMSES
19421/00
mg/Rg | 2000 | 9:0 | 10.0 | Ξ, - | 1 600 | - | 110000 | 220 | | 1100 | 909 | 130 | 100 | 3 | 2109 | 308 | 100 | 9 | | | | | | | 557 | - | - | _ | _ | _ | | | - | - | _ | _ | _ | - | | | | t | | | | | | | - | - | -66 | | - | ~ | _ | | * | _ | - | | - | | | 5 3 | 1 | + | | | | | | | | - i | - | | | | _ | | - | _ | - | 2 5 | - | - | Ĉ. | _ | | - | | | | | | | | | | | | | | | | | | 100 | - 3 | | - | | | | | | |